Manganese-substituted carbonic anhydrase as a new peroxidase.
نویسندگان
چکیده
Carbonic anhydrase is a zinc metalloenzyme that catalyzes the hydration of carbon dioxide to bicarbonate. Replacing the active-site zinc with manganese yielded manganese-substituted carbonic anhydrase (CA[Mn]), which shows peroxidase activity with a bicarbonate-dependent mechanism. In the presence of bicarbonate and hydrogen peroxide, (CA[Mn]) catalyzed the efficient oxidation of o-dianisidine with kcat/KM=1.4 x 10(6) m(-1) s(-1), which is comparable to that for horseradish peroxidase, kcat/KM=57 x 10(6) m(-1) s(-1). CA[Mn] also catalyzed the moderately enantioselective epoxidation of olefins to epoxides (E=5 for p-chlorostyrene) in the presence of an amino-alcohol buffer, such as N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES). This enantioselectivity is similar to that for natural heme-based peroxidases, but has the advantage that CA[Mn] avoids the formation of aldehyde side products. CA[Mn] degrades during the epoxidation limiting the yield of the epoxidations to <12 %. Replacement of active-site residues Asn62, His64, Asn67, Gln92, or Thr200 with alanine by site-directed mutagenesis decreased the enantioselectivity demonstrating that the active site controls the enantioselectivity of the epoxidation.
منابع مشابه
Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods
Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کامل6-Substituted 1,2-benzoxathiine-2,2-dioxides are isoform-selective inhibitors of human carbonic anhydrases IX, XII and VA.
A series of 6-substituted 2-benzoxathiine-2,2-dioxides were synthesized starting from 2,5-dihydroxybenzaldehyde, and then screened in vitro for their inhibition properties against five human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms. All the compounds showed excellent selectivity against the mitochondrial (hCA VA) and the tumor associated (hCA IX and XII) enzymes.
متن کاملQuantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model
Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2006